jadeja and his minimum spanning tree

All submissions for this problem are available.
MS Dhoni loves minimum spanning trees and Jadeja is a big fan of MS Dhoni. Let us remind you that a graph's spanning tree is defined as an acyclic connected subgraph of the given graph that includes all of the graph's vertexes. The weight of a tree is defined as the sum of weights of the edges that the given tree contains. The minimum spanning tree (MST) of a graph is defined as the graph's spanning tree having the minimum possible weight. For any connected graph obviously exists the minimum spanning tree, but in the general case, a graph's minimum spanning tree is not unique.
Now Dhoni asks Jadeja a difficult question and says he will not play until he answers it. Sir Jadeja knows you are good at graphs so he asks you to do the task for him.
The question is as follows: determine the following for each edge of the given graph: whether it is either included in any MST, or included at least in one MST, or not included in any MST.
Input
The first line contains two integers n and m (2 ≤ n ≤ 10^5, ) — the number of the graph's vertexes and edges, correspondingly. Then follow m lines, each of them contains three integers — the description of the graph's edges as "ai bi wi" (1 ≤ ai, bi ≤ n, 1 ≤ wi ≤ 10^6, ai ≠ bi), where ai and bi are the numbers of vertexes connected by the ith edge, wi is the edge's weight. It is guaranteed that the graph is connected and doesn't contain loops or multiple edges.
Output
Print m lines — the answers for all edges. If the ith edge is included in any MST, print "any"; if the ith edge is included at least in one MST, print "at least one"; if the ith edge isn't included in any MST, print "none". Print the answers for the edges in the order in which the edges are specified in the input.
Example
Sample test cases Input 4 5 1 2 101 1 3 100 2 3 2 2 4 2 3 4 1 Output none any at least one at least one any Input 3 3 1 2 1 2 3 1 1 3 2 Output any any none Input 3 3 1 2 1 2 3 1 1 3 1 Output at least one at least one at least one
Explanation
In the second sample the MST is unique for the given graph: it contains two first edges.
In the third sample any two edges form the MST for the given graph. That means that each edge is included at least in one MST.
Author:  knightofcodes 
Tags  knightofcodes 
Date Added:  16022016 
Time Limit:  1 sec 
Source Limit:  50000 Bytes 
Languages:  C, CPP14, JAVA 
Comments
 Please login at the top to post a comment.
SUCCESSFUL SUBMISSIONS
Fetching successful submissions
HELP
If you are still having problems, see a sample solution here. 