Short in Average

All submissions for this problem are available.
Read problems statements in Mandarin Chinese, Russian and Vietnamese as well.
There are a lot of problems related to the shortest paths. Nevertheless, there are not much problems, related to the shortest paths in average.
Consider a directed graph G, consisting of N nodes and M edges. Consider a walk from the node A to the node B in this graph. The average length of this walk will be total sum of weight of its' edges divided by number of edges. Every edge counts as many times as it appears in this path.
Now, your problem is quite simple. For the given graph and two given nodes, find out the shortest average length of the walk between these nodes. Please note, that the length of the walk need not to be finite, but average walk length will be.
Input
The first line of the input contains an integer T denoting the number of test cases. The description of T test cases follows.
The first line of each test case contains a pair of spaceseparated integers N and M denoting the number of nodes and the number of edges in the graph.
Each of the following M lines contains a triple of spaceseparated integers X_{i} Y_{i} Z_{i}, denoting the arc, connecting the node X_{i} to the node Y_{i} (but not viceversa!) having the weight of Z_{i}.
The next line contains a pair of space separated integers A and B, denoting the first and the last node of the path.
Output
For each test case, output a single line containing the length of the shortest path in average.
If there is no path at all, output just 1 on the corresponding line of the output.
Constraints
 1 ≤ N ≤ 500
 1 ≤ M ≤ 1000
 A is not equal to B
 1 ≤ A, B, X_{i}, Y_{i} ≤ N
 1 ≤ Z_{i} ≤ 100
 There are no selfloops and multiple edges in the graph.
 1 ≤ sum of N over all test cases ≤ 10000
 1 ≤ sum of M over all test cases ≤ 20000
Subtasks
 Subtask #1 (45 points): 1 ≤ N ≤ 10, 1 ≤ M ≤ 20; Your answer will be considered correct in case it has an absolute or relative error of no more than 10^{2}.
 Subtask #2 (55 points): no additional constraints; Your answer will be considered correct in case it has an absolute or relative error of no more than 10^{6}.
Example
Input: 2 3 3 1 2 1 2 3 2 3 2 3 1 3 3 3 1 2 10 2 3 1 3 2 1 1 3 Output: 1.5 1.0
Explanation
Example case 1. The walk 1 > 2 and 2 > 3 has average length of 3/2 = 1.5. Any other walks in the graph will have more or equal average length than this.
Author:  xcwgf666 
Tester:  harshil7924 
Editorial  http://discuss.codechef.com/problems/AVGSHORT 
Tags  bellmanford easymedium graph ltime39 shortestpath xcwgf666 
Date Added:  6082016 
Time Limit:  5 sec 
Source Limit:  50000 Bytes 
Languages:  ADA, ASM, BASH, BF, C, C99 strict, CAML, CLOJ, CLPS, CPP 4.3.2, CPP 4.9.2, CPP14, CS2, D, ERL, FORT, FS, GO, HASK, ICK, ICON, JAVA, JS, LISP clisp, LISP sbcl, LUA, NEM, NICE, NODEJS, PAS fpc, PAS gpc, PERL, PERL6, PHP, PIKE, PRLG, PYPY, PYTH, PYTH 3.4, RUBY, SCALA, SCM chicken, SCM guile, SCM qobi, ST, TCL, TEXT, WSPC 
Comments
 Please login at the top to post a comment.
SUCCESSFUL SUBMISSIONS
Fetching successful submissions
HELP
If you are still having problems, see a sample solution here. 