Special Agents

All submissions for this problem are available.
Read problems statements in Mandarin Chinese and Russian as well.
A special agent is usually the title for a detective or investigator for a state, county, municipal, federal or tribal government who conducts criminal investigations and has arrest authority. An agent is a federal law enforcement officer with arrest authority but who does not conduct major criminal investigations or who may conduct investigations but does not have arrest authority. Special agents are distinctly able to do both.
Special agents are often involved in breaking secret ciphers. In this problem we'll consider one of the challenges that agents usually face while decrypting secret messages.
Quite often, decrypting involves solving equations. In this problem, it will be an integral equation. You are given two polynomials Q(x) = q_{0} + q_{1} x + q_{2} x^{2} + ... + q_{n} x^{n}(q_{n} ≠ 0) and T(x) = t_{0} + t_{1} x + t_{2} x^{2} + ... + t_{m} x^{m}(t_{m} ≠ 0) with integer coefficients. Your task is to solve an equation of the following form:
To solve that equation means to find such a function P(x) that turns it into an equality for every real x. One can easily prove, that P(x) is a polynomial. Also, you may assume that such a polynomial always exists and unique.
Input
The first line of the input contains an integer K denoting the number of test cases. The description of K test cases follows.
The first line of the test case description contains one integer n denoting the degree of polynomial Q.
The second line contains n + 1 integers q_{0}, q_{1}, ..., q_{n} denoting the coefficients of Q.
The third line contains one integer m denoting the degree of polynomial T.
The fourth line contains m + 1 integers t_{0}, t_{1}, ..., t_{m} denoting the coefficients of T.
Output
For each query, output two lines: the first line contains one integer denoting the degree of polynom P, the second line contains the coefficients of P in the format described above with one exception: the coefficients may be real. Your answer will be accepted if the absolute error is not greater than 10^{6}.
It's guaranteed that the correct polynomial P(x) is not a zero polynomial.
Constraints
Example
Input: 1 1 1 2 0 5 Output: 1 1.5 2
Explanation
In the sample case, we are given the following data:
P(x) can be defined as following:
As we can see from the output, the answer is
We can simply replace P(x) with its value from the output to make sure, that all the equation solved correctly:
Author:  kostya_by 
Tester:  stzgd 
Editorial  http://discuss.codechef.com/problems/AGENTS 
Tags  cook57, hard, kostya_by, linearalgebra, math 
Date Added:  16032015 
Time Limit:  1 sec 
Source Limit:  50000 Bytes 
Languages:  C, CPP14, JAVA, PYTH, PYTH 3.6, PYPY, CS2, PAS fpc, PAS gpc, RUBY, PHP, GO, NODEJS, HASK, SCALA, D, PERL, FORT, WSPC, ADA, CAML, ICK, BF, ASM, CLPS, PRLG, ICON, SCM qobi, PIKE, ST, NICE, LUA, BASH, NEM, LISP sbcl, LISP clisp, SCM guile, JS, ERL, TCL, PERL6, TEXT, SCM chicken, PYP3, CLOJ, FS 
Comments
 Please login at the top to post a comment.
SUCCESSFUL SUBMISSIONS
Fetching successful submissions
HELP
If you are still having problems, see a sample solution here. 